On the Lower Bound Estimates of Sections of the Canonical Bundles over a Riemann Surface

نویسنده

  • ZHIQIN LU
چکیده

Suppose M is an n-dimensional Kähler manifold and L is an ample line bundle over M . Let the Kähler form of M be ωg and the Hermitian metric of L be H. We assume that ωg is the curvature of H, that is, ωg = Ric(H). The Kähler metric of ωg is called a polarized Kähler metric on M . Using H and ωg, for any positive integer m, H 0(M,Lm) becomes a Hermitian inner product space. We use the following notations: suppose that S, T ∈ H0(M,Lm). Let < S, T >Hm be the pointwise inner product and

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic Fiber Bundles over Riemann Surfaces

For the purpose of this paper a fiber bundle F—>X over a Riemann surface X is meant to be a fiber bundle in the sense of N. Steenrod [62] where the base space is X, the fiber a complex space, the structure group G a complex Lie group that acts as a complex transformation group on the fiber, and the transition functions g%j{x) are holomorphic mappings into G. Correspondingly, cross-sections are ...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

Magnetic monopoles over topologically non trivial Riemann Surfaces

An explicit canonical construction of monopole connections on non trivial U(1) bundles over Riemann surfaces of any genus is given. The class of monopole solutions depend on the conformal class of the given Riemann surface and a set of integer weights. The reduction of Seiberg-Witten 4-monopole equations to Riemann surfaces is performed. It is shown then that the monopole connections constructe...

متن کامل

Vector Bundles and Brill–Noether Theory

After a quick review of the Picard variety and Brill–Noether theory, we generalize them to holomorphic rank-two vector bundles of canonical determinant over a compact Riemann surface. We propose several problems of Brill–Noether type for such bundles and announce some of our results concerning the Brill–Noether loci and Fano threefolds. For example, the locus of rank-two bundles of canonical de...

متن کامل

The Severi bound on sections of rank two semistable bundles on a Riemann surface

Let E be a semistable, rank two vector bundle of degree d on a Riemann surface C of genus g > 1, i.e. such that the minimal degree s of a tensor product of E with a line bundle having a nonzero section is nonnegative. We give an analogue of Clifford's lemma by showing that E has at most (ds)/2 + 6 independent sections, where 6 is 2 or 1 according to whether the Krawtchouk polynomial Kr(n, N) is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999